
Wumpus 

Here it is: the alpha package containing Wumpus and a demo storyworld, 
RomCom. This is an alpha package—that means that it’s rough. It has bugs 
and lacks many useful features.

This version is like a 1965 Volkswagen bug: the rear window is broken, the 
windshield wipers don’t work, the passenger side door is wired shut, 
there’s a hole where the radio was, shifting from first gear into second gear 
takes a couple of tries, and the heater vents carbon monoxide into the car. 
But it works: it reliably gets you where you want to go. That’s good enough 
for alpha release; you folks can offer bug reports and suggestions for 
feature improvements.

My fear is that some of the feature suggestions will be a distraction. I’m 
sure that, if we implement all the suggestions, the VW will be transformed 
into a stretch Tesla limousine with a top speed of 185 mph, a wet bar, 
lounge seating for twelve, and a crew of dancing girls. For now, we won’t 
be doing that. For now, I just want to get the windshield wipers working 
and the rear window fixed.

I’ll not be releasing the source code for a while; I expect that I’ll be making 
so many code changes in response to bug reports that there’s no point in 
releasing source code yet. I’ll release the source code once the program has 
gotten into beta.



Bug Reports 
For now, I need bug reports from you. Not that many people seem to know 
how to write a useful bug report. It really doesn’t help to get a bug report 
saying “When I push the round thing, it doesn’t work right.” Here’s how to 
write a decent bug report.

First, write a short one-line summary of the bug, something that would 
serve as the subject line for an email.

Next, write a short explanation of the bug, fleshing out the one-line 
summary in greater detail.
Write a procedure for re-creating the bug. A great many bug reports are 
thrown into the trash can with the letters “CNR” scribbled across them. 
“CNR” means “Can Not Reproduce”. The programmer was unable to 
make the bug appear using the reporter’s instructions. Your procedure 
should state EXACTLY what I should do to reproduce the bug. You should 
test your procedure to make certain that it produces the results that you 
think wrong. 

 At the end of the procedure, you must state
1. What you expected to happen after the last step of the procedure.
2. What actually happened after the last step of the procedure.

Here’s an example based on a real bug I just fixed:

Summary: A newly-created encounter shows the contents of the previously 
edited encounter.

Explanation: when you create a new encounter, it shows the contents of the 
encounter that you were previously editing as if they were the contents of 
the newly-created encounter.



How to Reproduce: Open file RomCom35.xml. Select the encounter 
“PrepareForDate”. Click on the add button for encounters (the + button to 
the left of the “Encounters” title). Enter the title of the new encounter in the 
dialog box. Click on the “OK” button at the bottom of the dialog box. 
Observe that the new encounter shows the introductory text, options, 
reactions, and other properties of the “PrepareForDate” encounter. 

I expected that the screen would display null entries for all the properties 
of the encounter. 
Instead, the screen displayed the entries from the PrepareForDate 
encounter.

I’ll send you an email response to your bug report presenting one of three 
outcomes:
A. That’s not a bug, that’s a missing feature.
B. I was able to reproduce the bug and correct it. 
C. CNR.

Feature requests 
I’m sure that you’ll have plenty of ideas for feature additions. I will 
maintain a list of all proposed feature additions. I will prioritize these 
proposals based on my judgement of the ease of implementation and the 
relative value of the feature. As time permits, I will implement features in 
order of priority. This means that I will not be able to implement some 
features.

I already know three features that are truly needed but I can’t do. The first 
is the ability to rename encounters. The second is the ability to reorder 
encounters in the encounter list. Neither of these is easily done in Java. For 
now, you can accomplish these goals by simply editing the XML file. You 
DO have a text editor, don’t you?



The third necessary feature is a cut, copy, and paste capability for the text. 
This is not that difficult to do, but it does involve a few score lines of code, 
and I just haven’t had the time to implement it. 

We’ll spend the month of October messing around with this. I’ll be issuing 
new versions frequently. Sometime after that, we’ll organize a team to take 
over the project, and they can hire as many dancing girls as they want. 



How to use Wumpus 
Wumpus is simple to use but lacks many of the conveniences of modern 
programs. The difference between using Wumpus and using a 
conventional program is rather like the difference between camping out 
and staying in a hotel room.

When the program launches, it will demand a file to load. It should give 
you just one choice. You’ll have to make the agonizing decision about this 
all by yourself.

With the RomCom storyworld loaded, you’ll see a window like this:

I’ll move from top left to bottom right in explaining the contents of this 
window.

Buttons 
First we have three buttons for you to play with:



The first button saves the storyworld in its current state. This is the only 
way to save the file; there is no keyboard function for saving the file. 

The Character Editor 
The second button opens the character editor. When you press this button, 
you get a new window opening up. It looks like this:

The top row shows the Protagonist (the player). The sliders in that row 
show the Protagonist’s personality trait values. I have set Jeff to be a 
slightly good fellow with a tiny trace of dishonesty and a typical male 
desire to dominate. 



The yellow rows beneath present the other characters. However, the values 
in the sliders don’t represent that character’s personality trait values; 
instead, they present the yellow character’s pValues towards the magenta 
character. In this example, everybody else is completely neutral towards 
other people because they’ve never met. 

Characters named “Nobody” are never accessed by the engine. If you wish 
to establish a new character, just click inside the name box and type in a 
new name. If you wish to delete an existing character, nullify them by 
changing their name to “Nobody”.

Note also that you can select the gender of each character with the little 
radio buttons. We have no males or females, no men or women, boys or 
girls in Wumpus — just guys and gals, because they have shorter labels.

You can change relationships simply by using the sliders. Unfortunately, 
there’s a bug in Wumpus that makes the sliders jump around stupidly. I’ll 
be complaining bitterly about this bug until I find somebody else to fix it 
for me. 



Rehearsal 
The last button raises the rehearsal. This is an even more complicated 
doodad:

It is broken into two windows because the left window will eventually 
become the window that players will use, while the right window is only 
for developers to see. You cannot edit anything in either window; these 
exist only to give you information.

In the left window, you see the “introductory text” that introduces the 
encounter. Below it you see the options available to the player. You can 
execute the same commands that a player would be able to execute. You 
can click on one of the options to select it, and you click on the “OK” 
button to proceed to the next step in the story. When you do click on the 
OK button, you’ll see the antagonist’s reaction to your option. The 
debugger window will also show useful information:



Let’s zoom in on the debugger window:



The upper row tells you how the antagonist made her decision by 
presenting the inclination values of each of the three reactions. In this 
example, she had only one possible reaction, so the other two reactions are 
blanked out. 

The second row shows how the antagonist’s pValues towards the player 
have changed. It shows the final results of the changes, not the magnitudes 
of the changes themselves. This, you will find, is very useful information 
when you’re tuning the storyworld.

The Encounter List 
Just below the button panel is the Encounter List:



This lists all of the encounters in your storyworld. The plus button at the 
top left adds a new encounter, which you must name. The minus button at 
the top right deletes whatever encounter you have selected. To edit an 
encounter’s properties, you click on its name in this list, and all the relevant 
information appears in the other two columns.

The Center Column 



At the top, you have the introductory text. You can edit it here, but you 
cannot use cut, copy, or paste. Find somebody else to yell at over that 
shortcoming. 

Prerequisites and Disqualifiers 
These are encounters that are either required for this encounter to take 
place, or that prevent this encounter from taking place if they have 
themselves taken place. For example, suppose that the encounter you are 
editing is about you riding your horse. However, there is a previous 
encounter in which somebody gives you the horse. That previous 
encounter is a prerequisite to this one; you can’t ride a horse you don’t 
have. So you would enter the previous encounter as a prerequisite. You do 
this by clicking on the plus button to the left of the word “Prerequisites” 
and selecting the appropriate encounter from the pop-up list. You can 
delete a prerequisite by selecting it and pressing the minus button to the 
right of the word “Prerequisites”.

Disqualifiers are encounters that would prevent the edited encounter from 
taking place. For example, if there’s a previous encounter in which the 
horse is killed and eaten by a monster, then you can’t go riding on it, so the 
encounter “Monster eats horse” would be entered in the Disqualifiers box. 

Odds and Ends 
Next comes a little pink bar:

The first doodad specifies the earliest turn number on which this encounter 
can appear. The second doodad specifies the latest turn number on which 
this encounter can appear. These two numbers establish a time window 
that the engine uses to decide which encounter to present.



Next comes the “Terminal” checkbox. If checked, then this encounter is the 
last in the storyworld and the engine quits after this encounter is done.

Lastly comes the “Antagonist” slot. This allows you to specify whom this 
encounter is addressing. This is important! Make sure that it shows the 
person whom the player is interacting with in this encounter.

Options 
The bottom slot is where you enter the text for the three options — or fewer 
— that you offer your player. Usually that will be a statement of some sort, 
in which case you put the words inside quotation marks. However, you can 
also present physical actions, in which case the protocol is to present it in 
first person, as in:

I punch and kick the innocent young orphan.

This won’t affect the behavior of the engine, it’s just the protocol we use for 
the benefit of the player.

If the option text is exactly this:

[Unused Option]

then the engine will ignore this option. But if you make the slightest, 
tiniest, most insignificant change in this text, then the engine WILL activate 
this option, and your player will end up being able to ‘Unused option’. 



The Right Column

This has just two sections, but they’re complicated. We begin with the 
upper section that specifies the three possible reactions. As with options, a 
reaction that says “[Unused Reaction]” will not be considered by the 
engine, but if it deviates from this exact spelling, the engine will use it. Do 



you think that’s bad user interface design? If so, go design your own 
feculent system!

There are seven separate doodads in this panel. The first one is easy: it’s 
where you type in the text that the player sees when this reaction is 
selected by the engine. 

Underneath that is a slider. This controls the weighting of the two traits 
specified just underneath the slider. Those traits are specified with pop-up 
menus. There are three traits; you can specify either the trait or the pValue 
of the Antagonist towards the Protagonist. Remember that you specified 
the Antagonist in the middle of the center column? This is why it’s so 
important to specify the Antagonist! 

You can also specify the negative value of each of the Traits and their 
pValues. You would, for example, use pBad_Good in situations where the 
Antagonist liking the Protagonist inclines the Antagonist TOWARDS this 
reaction, and you would use the negative value of pBad_Good in situations 



where the Antagonist liking the Protagonist inclines the Antagonist 
AGAINST this reaction.

Lastly, at the very bottom of the panel is a little pop-up menu that allows 
you to specify a direct consequence for this reaction. If this reaction is 
selected by the engine, then the consequence specified here will be selected 
as the next encounter executed. The title of the consequence will be 
inserted between the Consequence pop-up menu and the deletion button to 
its right. Yes, that deletion button deletes any existing consequence.



Notes on Storyworld Construction 

I urge you to begin by messing around with the demo storyworld, 
RomCom. I tried to include most of the basic elements of storyworld 
design into this demo, but its small size makes it impossible to truly 
demonstrate the principles of good storyworld design. I have not yet built 
a big storyworld, although I’ve been working on the Le Morte D’Arthur 
storyworld for a year now, and have spent a lot of time thinking about its 
structure as I’ve built it.

Small steps, not big leaps 
A good storyworld plays like bringing in a big fish with a weak fishing line. 
Unlike a game, storyworlds don’t have big dramatic moments where the 
player decides the fate of the universe — not until the very end. Instead, 
the dramatic action proceeds in lots of small steps, some forward, some 
backward. Sometimes, the player must accept reversals, just as a fisherman 
must let the fish have the line when he pulls hard. At other times, the 
player can reel in the drama, just as the fisherman reels in the fish when it 
pauses. 

The underlying strategy is for the player to improve the pValues of the 
other characters towards the player. This process takes place through a 
multitude of small steps. People don’t fall in love after one clever comment. 
People don’t commit to follow a leader after he does one heroic thing. 
Relationships develop over hundreds of small steps. Inevitably, there are 
setbacks, and recovering from the setbacks is a crucial part of the process. 

Sometimes improving your relationship with one character hurts your 
relationship with another character. Balancing one gain against another loss 
is also part of the process of building relationships. 



It’s not the path 
People who labor under the misconception that a storyworld is like a text 
adventure tend to think in terms of a network of nodes to traverse, with 
one node representing success, and that node can be reached only by 
tracing the correct path. This is double-plus ungood wrongthink. The 
player’s success or failure is established by WHAT he does while 
traversing the network, not WHERE he goes. Theoretically, it should be 
possible to create a simple linear path that the player traverses every time 
he plays, but the player’s choice of options in each case determine the 
outcome. Here’s are some diagrams showing various networks, paths, and 
trees:

A story is simply a linear sequence of events, with no choices available to 
the reader. The simplest and most obvious way to make it interactive is 
with a conventional tree structure where the player’s choices lead to 
different outcomes. The flaw in tree structures is the exponential explosion 
of nodes; nobody can build a tree big enough to provide an interesting 
experience. 



The big step forward is a directed graph with global variables whose 
values change incrementally as the graph is traversed. An early and very 
simple version of this was Pac-Man:

The directed graph is shown on the right; the dots are the global variables 
that are changed by traversal through the graph. However, this is a simple 
application of the idea of using a directed graph with global variables; the 
Storytron technology took this much further with a much richer set of 
global variables that could be altered by the player’s behavior as he 
traversed the graph.



Here is a very, very simple version of the graph for an encounter-based 
storyworld:

Here it is the pValues that are altered by the player’s behavior as he 
traverses the simple story-like graph. 



RomCom 

The demo storyworld is RomCom. It presents a simple story of a guy and a 
gal meeting. It’s nowhere near polished and perfect; there are plenty of 
tuning problems, but my intention is to give users the opportunity to mess 
around with a storyworld. 

The first four encounters (A Bad Day, First Meeting, Introductions, and 
Schedule Lunch) are prefatory. They are meant to provide an introduction 
to the general situation and the characters. The player does not have any 
leeway for meaningful interaction. This is necessary to encounter 
storyworlds; the player should not have to make decisions before the basic 
situation has been laid down. Only after the player has gone through the 
basics should the player be presented with dramatically meaningful 
choices. This takes place in the next five encounters (Prepare for Date, 
Opening Conversation, What’s Your Job, Are You From Here?, and Ask 
About Pets). These lead to the concluding encounter, Final Decision, in 
which the results of the player’s actions are brought to bear.

There are five endpoints to the game, each reached in a different manner. 


